Ising-like transitions in the O(n) loop model on the square lattice.
نویسندگان
چکیده
We explore the phase diagram of the O(n) loop model on the square lattice in the (x,n) plane, where x is the weight of a lattice edge covered by a loop. These results are based on transfer-matrix calculations and finite-size scaling. We express the correlation length associated with the staggered loop density in the transfer-matrix eigenvalues. The finite-size data for this correlation length, combined with the scaling formula, reveal the location of critical lines in the diagram. For n>>2 we find Ising-like phase transitions associated with the onset of a checkerboardlike ordering of the elementary loops, i.e., the smallest possible loops, with the size of an elementary face, which cover precisely one-half of the faces of the square lattice at the maximum loop density. In this respect, the ordered state resembles that of the hard-square lattice gas with nearest-neighbor exclusion, and the finiteness of n represents a softening of its particle-particle potentials. We also determine critical points in the range -2≤n≤2. It is found that the topology of the phase diagram depends on the set of allowed vertices of the loop model. Depending on the choice of this set, the n>2 transition may continue into the dense phase of the n≤2 loop model, or continue as a line of n≤2 O(n) multicritical points.
منابع مشابه
Magnetic Properties and Phase Transitions in a Spin-1 Random Transverse Ising Model on Simple Cubic Lattice
Within the effective-field theory with correlations (EFT), a transverse random field spin-1 Ising model on the simple cubic (z=6) lattice is studied. The phase diagrams, the behavior of critical points, transverse magnetization, internal energy, magnetic specific heat are obtained numerically and discussed for different values of p the concentration of the random transverse field.
متن کاملMagnetic Properties in a Spin-1 Random Transverse Ising Model on Square Lattice
In this paper we investigate the effect of a random transverse field, distributed according to a trimodal distribution, on the phase diagram and magnetic properties of a two-dimensional lattice (square with z=4), ferromagnetic Ising system consisting of magnetic atoms with spin-1. This study is done using the effectivefield theory (EFT) with correlations method. The equations are derived using...
متن کاملPhase Diagram of a Loop on the Square Lattice
The phase diagram of the O(n) model, in particular the special case n = 0, is studied by means of transfer-matrix calculations on the loop representation of the O(n) model. The model is defined on the square lattice; the loops are allowed to collide at the lattice vertices, but not to intersect. The loop model contains three variable parameters that determine the loop density or temperature, th...
متن کاملCluster Simulations of Loop Models on Planar Lattices
Making use of the duality relation of the Ising model, we develop cluster algorithms for several loop models on planar lattices. We then investigate the O(n) model on the honeycomb lattice and faceand corner-cubic models on the square lattice. Several new physical phenomena are observed. For instance, critical exponents, which have not been reported for the O(n) model in literature, are determi...
متن کاملExact Solution of the Ising Model on the Square Lattice with Free Boundary Conditions
The square-lattice Ising model is the simplest system showing phase transitions (the transition between the paramagnetic phase and the ferromagnetic phase and the transition between the paramagnetic phase and the antiferromagnetic phase) and critical phenomena at finite temperatures. The exact solution of the squarelattice Ising model with free boundary conditions is not known for systems of ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 87 5 شماره
صفحات -
تاریخ انتشار 2013